数据分析(Data Analysis),一般数据分析常常有以下5个步骤:
01
定义需求 Define requirement
数据分析的目的往往是支持决策,首先需要的是明确目标: 我需要解决什么问题?
举一个简单的例子:
我们发现今年三月份某产品的销量减少了50%,而我们想去分析这背后的原因,从而可以去解决销量下跌的问题。
再举一个例子:
如果我们想要知道如何在不牺牲产品质量的情况下降低生产成本,过往的产品数据,供应商报价,以及竞争对手和市场中收集到的数据也许可以帮助我们分析解决这一问题。
02
收集数据 Data collection
数据收集主要一般从内部来源 (Internal Sources) 开始。这通常是从CRM软件,ERP系统,市场营销自动化工具等收集的结构化数据。从中我们可以获取到包含有关客户,财务,销售差距等信息。
其次是外部来源 (External Sources),从中可以收集到许多的结构化和非结构化数据。
例如,如果您希望对某品牌进行用户行为分析,则可以从主流评论网站或社交媒体应用程序接口 (API) 收集数据。
03
数据清理 Data Cleaning
从所有必要的来源收集数据后,接下来一个步骤就是清理和整理数据。在数据分析过程中,数据清理非常重要,这是因为并非所有数据都是好数据。
为了产生准确的结果,必须识别并清除重复的数据,异常的数据以及其他可能使分析产生偏差的不一致之处。60%的数据科学家表示,他们的大部分时间都花在清理数据上。
04
数据分析 Data Analysis
数据分析可以通过许多不同的方法达成:
一种方法是通过数据挖掘 (Data Mining),这被定义为“数据库内的知识发现”。诸如聚类分析,异常检测,关联规则挖掘之类的方法可以揭示数据之中隐含的规律。
另一种方法是使用商业智能和数据可视化软件,例如Excel,Power BI等,这些工具可生成易于理解的报告和图表。在接下来的文章中,我们也会重点去学习如何使用Excel,Power BI等工具。
05
解释结果 Results Interpret
最后一步是解释数据分析的结果,这部分很重要,因为这是企业从前四个步骤中获得实际价值的方式。
如果对于数据分析师感兴趣的话可以关注我[大笑] 我会持续更新文章,分享学习资源,
相关标签: # 如何做好数据分析的业务需求分析工作
最新留言